National Repository of Grey Literature 13 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Modelling and analysis of auxetic materials response on the mechanical loading
Vítek, Tomáš ; Skalka, Petr (referee) ; Ševeček, Oldřich (advisor)
This bachelor’s thesis is focused on auxetic materials, especially on their response on the mechanical loading. Historical development, significant mechanical properties, different ways of modelling and possible practical applications of these materials are described in the research part of the thesis. The computational part deals with the detailed analysis of selected auxetic structures in order to evaluate their elastic properties depending on different geometric parameters and also on the magnitude of applied deformation. Computational modelling is primarily performed using the software ANSYS Mechanical APDL based on the finite element method (FEM). This method is briefly explained in one chapter. In the following part of the thesis the process of creating a parametric model and reducing the whole structure to a minimum geometry size (a part of a basic unit) is described. A detailed explanation of generating the mesh and setting appropriate boundary conditions is also included together with the results evaluation. Elastic properties obtained by numerical simulations are then compared to available analytical model. Dependencies of elastic properties are presented for a wide range of values of selected geometric parameters and applied deformations of the structure considering small and large deformation regimes. An influence of these parameters on a structure response during the mechanical loading is discussed based on these dependencies. At the end of the thesis the values of elastic properties computed using a finite element method are confronted to the experimental data available in the literature and the validity of the computational model is considered based on this comparison.
The Role of Bi/Material Interface in Integrity of Layered Metal/Ceramic
Masini, Alessia ; Černý, Martin (referee) ; Bermejo, Raul (referee) ; Chlup, Zdeněk (advisor)
The present doctoral thesis summarises results of investigation focused on the characterisation of materials involved in Solid Oxide Cell technology. The main topic of investigation was the ceramic cell, also known as MEA. Particular attention was given to the role that bi-material interfaces, co-sintering effects and residual stresses play in the resulting mechanical response. The first main goal was to investigate the effects of the manufacturing process (i.e. layer by layer deposition) on the mechanical response; to enable this investigation, electrode layers were screen-printed one by one on the electrolyte support and experimental tests were performed after every layer deposition. The experimental activity started with the measurement of the elastic characteristics. Both elastic and shear moduli were measured via three different techniques at room and high temperature. Then, uniaxial and biaxial flexural strengths were determined via two loading configurations. The analysis of the elastic and fracture behaviours of the MEA revealed that the addition of layers to the electrolyte has a detrimental effect on the final mechanical response. Elastic characteristics and flexural strength of the electrolyte on the MEA level are sensibly reduced. The reasons behind the weakening effect can be ascribed to the presence and redistribution of residual stresses, changes in the crack initiation site, porosity of layers and pre-cracks formation in the electrode layers. Finally, the coefficients of thermal expansion were evaluated via dilatometry on bulk materials serving as inputs for finite elements analyses supporting experiments and results interpretation. The second most important goal was to assess the influence of operating conditions on the integrity of the MEA. Here interactions of ceramic–metal interfaces within the repetition unit operating at high temperatures and as well at both oxidative and reductive atmospheres were investigated. The elastic and fracture responses of MEA extracted from SOC stacks after several hours of service were analysed. Layer delamination and loss of mechanical strength were observed with increasing operational time. Moreover, SEM observations helped to detect significant microstructural changes of the electrodes (e.g. demixing, coarsening, elemental migration and depletion), which might be responsible for decreased electrochemical performances. All the materials presented in this work are part of SOC stacks produced and commercialised by Sunfire GmbH, which is one of the world leading companies in the field.
Estimation of mechanical properties of thin films using numerical modelling of experimental tests
Tinoco Navarro, Hector Andres ; Jančo,, Roland (referee) ; Klusák,, Jan (referee) ; Hutař, Pavel (advisor)
Testování tenkých filmů pomocí "Bulge testu" je experimentální technika která zahrnuje použití numerických a analytických přístupů k charakterizaci mechanických vlastností tenkých vrstev. Tato práce se zabývá některými omezeními nalezenými v klasických modelech, které popisují chování tenkých vrstev podrobených tomuto testu. Za tímto účelem byly vyvinuty nové modely a numerické strategie pro stanovení různých mechanických vlastností jednovrstvých a dvouvrstvých tenkých vrstev za odlišných strukturních podmínek, jako je elasticita, plasticita a lom. Kombinací metody konečných prvků a klasických analytických řešení byly navrženy a ověřeny různé metodiky pro výpočet elastických vlastností (E a v), zbytkových napětí, meze kluzu a lomové houževnatosti. Mechanické vlastnosti filmů z nitridu křemíku, hliníku a zlata byly charakterizovány pomocí experimentálních dat o zatížení-průhybu získaných z měření. Stanovené vlastnosti vykazovaly uspokojivou shodu s což potvrdilo, že metody navržené v této práci mohou být užitečné pro odhad mechanických vlastností se známými materiálovými vlastnostmi tenkých vrstev.
Modelling and analysis of auxetic materials response on the mechanical loading
Vítek, Tomáš ; Skalka, Petr (referee) ; Ševeček, Oldřich (advisor)
This bachelor’s thesis is focused on auxetic materials, especially on their response on the mechanical loading. Historical development, significant mechanical properties, different ways of modelling and possible practical applications of these materials are described in the research part of the thesis. The computational part deals with the detailed analysis of selected auxetic structures in order to evaluate their elastic properties depending on different geometric parameters and also on the magnitude of applied deformation. Computational modelling is primarily performed using the software ANSYS Mechanical APDL based on the finite element method (FEM). This method is briefly explained in one chapter. In the following part of the thesis the process of creating a parametric model and reducing the whole structure to a minimum geometry size (a part of a basic unit) is described. A detailed explanation of generating the mesh and setting appropriate boundary conditions is also included together with the results evaluation. Elastic properties obtained by numerical simulations are then compared to available analytical model. Dependencies of elastic properties are presented for a wide range of values of selected geometric parameters and applied deformations of the structure considering small and large deformation regimes. An influence of these parameters on a structure response during the mechanical loading is discussed based on these dependencies. At the end of the thesis the values of elastic properties computed using a finite element method are confronted to the experimental data available in the literature and the validity of the computational model is considered based on this comparison.
The Role of Bi/Material Interface in Integrity of Layered Metal/Ceramic
Masini, Alessia ; Černý, Martin (referee) ; Bermejo, Raul (referee) ; Chlup, Zdeněk (advisor)
The present doctoral thesis summarises results of investigation focused on the characterisation of materials involved in Solid Oxide Cell technology. The main topic of investigation was the ceramic cell, also known as MEA. Particular attention was given to the role that bi-material interfaces, co-sintering effects and residual stresses play in the resulting mechanical response. The first main goal was to investigate the effects of the manufacturing process (i.e. layer by layer deposition) on the mechanical response; to enable this investigation, electrode layers were screen-printed one by one on the electrolyte support and experimental tests were performed after every layer deposition. The experimental activity started with the measurement of the elastic characteristics. Both elastic and shear moduli were measured via three different techniques at room and high temperature. Then, uniaxial and biaxial flexural strengths were determined via two loading configurations. The analysis of the elastic and fracture behaviours of the MEA revealed that the addition of layers to the electrolyte has a detrimental effect on the final mechanical response. Elastic characteristics and flexural strength of the electrolyte on the MEA level are sensibly reduced. The reasons behind the weakening effect can be ascribed to the presence and redistribution of residual stresses, changes in the crack initiation site, porosity of layers and pre-cracks formation in the electrode layers. Finally, the coefficients of thermal expansion were evaluated via dilatometry on bulk materials serving as inputs for finite elements analyses supporting experiments and results interpretation. The second most important goal was to assess the influence of operating conditions on the integrity of the MEA. Here interactions of ceramic–metal interfaces within the repetition unit operating at high temperatures and as well at both oxidative and reductive atmospheres were investigated. The elastic and fracture responses of MEA extracted from SOC stacks after several hours of service were analysed. Layer delamination and loss of mechanical strength were observed with increasing operational time. Moreover, SEM observations helped to detect significant microstructural changes of the electrodes (e.g. demixing, coarsening, elemental migration and depletion), which might be responsible for decreased electrochemical performances. All the materials presented in this work are part of SOC stacks produced and commercialised by Sunfire GmbH, which is one of the world leading companies in the field.
Estimation of mechanical parameters of thin films using finite element analysis
Tinoco Navaro, Hector Andres ; Holzer, Jakub ; Pikálek, Tomáš ; Buchta, Zdeněk ; Lazar, Josef ; Chlupová, Alice ; Kruml, Tomáš ; Hutař, Pavel
This study shows a methodology to estimate mechanical parameters of thin films by means of a bulge\ntest and a numerical approach. The methodology is based on the combination of finite element analysis with a\nclassical analytical method. Finite element modelling was conducted for monolayer (Si3N4) membranes of 2x2mm\nwith the aim to approximate both the load-deflection curves experimentally measured and the classical loaddeflection\nanalytical model. Error functions were constructed and minimized to delimit a coupled solution space\nbetween Young’s modulus and Poison’s ratio. In a traditional bulge test analysis only one of the elastic properties\ncan be determined due to that there is not unique solution in the estimations of these parameters. However, both\nelastic parameters were determined through the proposed numerical procedure which compares the deformed\nsurfaces for a specific set of optimal elastic parameters computed. Results shows that the estimated elastic\nproperties agree with corresponding values determined by other methods in the literature
Modelling mechanical properties of RNA and DNA
Dršata, Tomáš ; Lankaš, Filip (advisor) ; Banáš, Pavel (referee) ; Schneider, Bohdan (referee)
Structural and mechanical properties of nucleic acids play a key role in a wide range of biological processes, as well as in the field of nucleic acid nanotechnology. The thesis presents results of several studies focused on modelling these properties. Extensive unrestrained atomic-resolution molecular dynamics (MD) simulations are used to investigate structural dynamics of nucleic acids, and to parametrize their mechanical models. The deformation energy is assumed to be a general quadratic function of suitably chosen internal coordinates. Two types of models are employed which differ in the level of coarse- graining. The first one is based on the description of conformation at the level of individual bases and the second, coarser one is used to study global bending and twisting flexibility. The models are applied to explain mechanical properties of A-tracts in the context of DNA looping and nucleosome positioning, to characterize twist-stretch cou- pled deformations in DNA and RNA, and to predict changes in the properties of damaged DNA that are likely to be relevant for damage recognition and repair. Besides that, we propose a general model of DNA allostery, applied to study the effect of minor groove binding of small ligands and the allosteric coupling between proteins mediated by the DNA. A careful...
Large-scale micro-finite element simulation of compressive behavior of trabecular bone microstructure
Jiroušek, Ondřej ; Zlámal, Petr
Microstructural finite element analysis has become a standard technique for evaluation of mechanical properties of trabecular bone. Due to the high complexity of the trabecular bone microstructure, the FE models have a very large number of elements (about 1 million elements per cubic cm in 50 μm3 resolution). To perform FE analysis of the microstructural FE models based on micro-CT scanning of whole bone samples (e.g. vertebral bodies) it is needed to solve 107 -- 108 equations. This article deals with comparison of approaches using voxel-based microstructural FE models to calculate the overall mechanical properties of trabecular bone.
Evaluation of elastic properties of composites
Landa, Michal ; Seiner, Hanuš ; Goldmann, T. ; Pompe, V.
In this paper there are uncluded results on evaluation of elastic properties of composites
Determination of elastic moduli of anisotropic solids from ultrasonic measurements
Seiner, H. ; Landa, Michal
This nondestructive, and partially noncontact method have a potential for material evalution of layered anisotropic structures.

National Repository of Grey Literature : 13 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.